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Abstract—Interest in OpenFlow and software-defined net-
works (SDNs) has resulted in a boom in SDN hardware and
controller offerings, with varying degrees of maturity, popularity
and support. However, few studies have been conducted to
investigate the interaction between SDN hardware and software,
as well as its impact on controller design and implementation.
In this paper, we chronicle our experience with deploying two
commodity SDN controllers and a new system, IronStack, of
our own design in a production enterprise network at Cornell
University, and describe the lessons learnt. We also report on
several practical limitations of SDN and controller technology,
and detail important future challenges for SDN adopters and
developers.

I. INTRODUCTION

Software-defined networking (SDN) has enjoyed popu-
larity in recent years because it makes network hardware
amenable to software control methods. Among SDN control
methods, OpenFlow [14] is arguably the most prevalent, well-
documented and well-understood protocol. The first version of
OpenFlow was published in 2009 [15], and the protocol has
since been through several iterations [16]–[20] of development
and refinement. Today, many hardware vendors offer switching
and routing equipment with OpenFlow support. Correspond-
ingly, SDN technology has permeated many enterprises as
operators have learned to take advantage of the software
control. OpenFlow networks have been deployed to service a
diverse range of operating scenarios, including mission-critical
commercial applications [12].

The success and excitement surrounding SDNs belies the
fact that actual hardware support for OpenFlow spans a
wide spectrum. Older OpenFlow-compliant devices often lack
the necessary firmware to support some of the more recent
versions of OpenFlow. Even among hardware that support
the same version of OpenFlow, varying manufacturers, imple-
mentations and cost/performance tradeoffs result in different
coverage of OpenFlow commands. Furthermore, the Open-
Flow specification does not mandate the support of optional
commands listed in the standard. Furthermore, some vendors
provide non-standard OpenFlow adaptations or extensions [2].

Another issue is that many enterprises do not actually write
their own SDN controller software, and view OpenFlow more
as a unifying standard than as an opportunity to innovate
by creating new specialized control paradigms. Our own re-
search on a new SDN controller we call IronStack focuses
on automating fault-tolerance and security for deployments
into challenging settings [23]. But in dialog with potential
users we often find that the system owner is less focused on

features than on convenience and the level of effort needed
to actually deploy and manage the solution. Given an easily
deployed, easily operated technology, feature coverage and
special properties emerge as a secondary goal. Yet in settings
like Cornell, where our networks are managed by an in-house
professional team, the fear that SDN might be overwhelmingly
complex and suitable only for research and experimentation
actually dominates the appeal of standardization. Thus until
SDN learns to be a user-friendly turn-key story for the SDN
manager, it is unclear how the full potential of the technology
could be leveraged.

This paper first presents our experience in building and op-
erating a small-scale production OpenFlow SDN from scratch,
using market-available hardware and off-the-shelf general-
purpose OpenFlow controllers. We also discuss limitations of
existing commercial options. We then describe the impact of
lessons learned and turn these into recommendations. Finally,
we discuss some practical challenges that lay ahead for pro-
grammable network technology.

II. BACKGROUND

Software-defined networking (SDN) is a modern abstrac-
tion that allows access to a network switch’s routing fabric.
In SDN models, the switch’s control plane is accessible to
an external entity known as a controller, to which all data
forwarding decisions are delegated. This control plane has
complete command of the data plane, where units of network
packets are transferred between physical ports on the switch.
There is also some limited capability to transfer packets
between the data plane and the control plane.

OpenFlow [14] is the most widely deployed SDN stan-
dard today. OpenFlow is managed by the Open Networking
Foundation and has seen significant evolution through multiple
versions. The most recent version of OpenFlow is 1.5 [19],
although many switches marketed as OpenFlow-capable sup-
port only OpenFlow 1.0. Successive versions of the standard
have increased complexity and are not backward-compatible,
necessitating independent firmware support for each version of
the standard that a switch hardware supports.

On the software end, there are multiple efforts to develop
operational OpenFlow controllers, each with varying degrees
of programmability, complexity and performance. Some pop-
ular controllers include the open-source POX [8] (a generic
Python-based system), Floodlight [4] (Java-based), OpenDay-
light [7] and ovs-controller [6] (a C-based reference controller



written by Open vSwitch). Commercial closed-source con-
trollers include the Ericsson SDN controller [3] (derived from
OpenDaylight), NEC’s ProgrammableFlow Controller PF6800
[5] and Big Switch’s Big Network Controller [1].

While SDN controllers are available in many forms for
different specific applications, the ones we are interested in
for the purposes of this paper are generic enterprise-level
controllers for general purpose computing, such as fitting for
the access patterns of a campus network.

III. OVERVIEW OF THE GATES HALL SDN

Cornell’s Gates Hall SDN comprises 15 high-capacity
Dell S4810/S4820 10Gbps switches linking approximately 300
physical hosts over 3 machine rooms and multiple instructional
and research labs, providing service to over 1000 students and
faculty.

Administratively, the SDN is solely managed by the In-
formation Technology Support Group (ITSG), a team that
oversees and supports all engineering IT needs. ITSG does
not engage in research, nor in SDN programming as an
activity: their role is to ensure that the network operates
in a correct, secure, and administratively controlled manner.
However, uplink to the general campus network is provided
and managed by a different campus-wide organization: Cornell
Information Technologies (CIT). CIT requires an L3 isolation
router that separates the SDN from the rest of the campus. The
L3 isolation router is seen as an emergency kill switch in the
event that the SDN interferes with the general campus network.
This router is the sole connection to the campus network (by
feeding into one of the three main campus routers), and is
also responsible for assigning and managing IP addresses for
all hosts on the Gates Hall SDN.

Physically, all machines on the SDN share the same
switching infrastructure. In order to support Cornell’s diverse
mix of networking research, the SDN is fragmented into
VLANs. Each VLAN is a continuous L2 segment configured
with access permissions specific to the usage patterns of its
member machines, so membership in a VLAN provides a
coarse form of access control. For example, several racks
within our datacenter supporting operating systems research
require PXE boot and an internal DHCP server within their
cluster, yet the cluster itself is not permitted to communicate
with the external world. These machines are assigned to a
VLAN distinct from the one used to service instructional lab
machines which must be accessible remotely over the Internet.
Although the principle of VLAN isolation could be considered
archaic on an SDN compared to appropriately provisioned
rules, it nonetheless provides a convenient point of control
at the L3 isolation router, where all SDN VLANs converge.

IV. HARDWARE SLICING

The SDN switches in Gates Hall are a combination of high-
capacity Dell S4810 and S4820 switches. These switches are
identical except for the physical ports exposed on the front
panel: the S4810 switches feature copper SFP (small form-
factor pluggable) ports while the S4820 use regular 8P8C
(8 position 8 contact) ports. The 8P8C ports are physically
more compatible with a wider range of devices, making it
substantially easier to connect to commodity Ethernet devices.

Fig. 1. Topology of Gates Hall SDN.

Both models of switches are capable of being ‘sliced’1 into
instances, thereby allowing multiple controllers to operate on
logically disjoint portions of the hardware. This is conceptually
similar to the virtualization provided by FlowVisor [22], except
that the hardware enforces the isolation. Two methods are
available for this slicing.

A. Port-based instances

In port-based slicing, a Dell S4810/20 switch may be
arbitrarily partitioned into as many as 8 concurrent instances of
disjoint ports. Not all ports have to be assigned to an instance.
Each instance can be associated with an independent Open-
Flow controller, essentially partitioning the switch physically
into multiple smaller switches. Using port-based partitioning,
network topologies of up to 8 switches can be simulated using
a single piece of hardware. This feature has proven useful in
many experiments that we have conducted.

Port-based isolation has the advantage that it is easy to set
up and intuitive from the physical and OpenFlow controller
standpoint. We recommend using port-based instancing for
developers or researchers beginning in the field.

B. VLAN-based instances

An S4810/20 switch configured to operate with VLANs
in OpenFlow mode can also slice the hardware into instances
through VLAN assignments. When operating under this mode,
physical ports on the switch are assigned VLAN IDs and
marked as tagged or untagged. The tagging status indicates
whether a port emits and accepts IEEE 802.1Q frames [24],
or regular untagged Ethernet frames. Ports with more than one
VLAN ID assignment cannot be marked as untagged.

Up to 8 controller instances may be provisioned this
way. Each OpenFlow controller is assigned to manage a set
of VLAN IDs, which must be disjoint from other sets of

1The term ‘slice’ first appeared in GENI [10] literature and was used in
FlowVisor [22] to describe a similar concept.



VLAN IDs managed by other controllers. From the OpenFlow
controller point of view, the viewable set of physical ports
comprise those that are assigned to the VLAN IDs under the
instance’s control. In addition, ingress traffic on VLAN-tagged
physical ports are filtered to retain only packets relevant for
the set of VLANs managed by that instance, so a controller
for a particular instance will only see tagged VLAN traffic
corresponding to its assigned set of VLAN IDs. Other VLAN
traffic arriving at the switch is either sent to another relevant
managing instance or dropped. The S4810/20 hardware auto-
matically enforces VLAN isolation on a hardware level, and
no OpenFlow rules are necessary for this enforcement.

VLAN-based isolation is useful in an environment with
multiple VLANs and non-OpenFlow switches, when flow rules
need to be conserved and/or some hardware oversight is
desired to prevent controllers from making mistakes enforcing
VLAN isolation. However, this mode of operation is tech-
nically non-compliant with the OpenFlow standard and has
behavior that can be confusing for people new to OpenFlow.
For example, an administrator wishing to create a layer 2 rule
that forwards flows from a tagged to an untagged port should
specify a match criteria with an Ethernet destination address
and a VLAN ID. However, the action set cannot include a
directive to strip the VLAN tag (an OFPT_BAD_ACTION error
would be returned by the switch), even if it seems logical to do
so before outputting the packet to an untagged physical port.
Instead, the switch performs tagging and untagging automat-
ically. Other operations in VLAN-based isolation mode, such
as a flow rule that copies all packets from one physical port to
another, may simply not work without any warning or error.

V. EXPERIENCE WITH CONTROLLERS

Our operational experience2 with OpenFlow SDNs spans
about 24 months, of which 4-6 months were spent on hard-
ware familiarization and micro experiments involving isolated
switches. With the SDN fully deployed in February 2014,
we sliced every switch into 4 VLAN-based instances and
ran different controllers on each instance. The first two in-
stances ran production traffic using an open source controller
(”Controller A”) and a commercial controller (”Controller B”)
respectively, while the latter two were reserved for research and
development purposes and ran our IronStack controller for the
full period of the study. Our switch firmware only supported
OpenFlow 1.0 at the time the network went into production
(1.3 support arrived in spring 2015) so most of our anecdotal
experience is based on the older standard. However, we believe
that our insights transcend versions and remain relevant.

A. Controller A

Controller A is an open source OpenFlow controller that
has enjoyed widespread popularity since its initial release a few
years ago. The system is designed to operate in a centralized
manner, with all OpenFlow switches directly connected to the
controller. Because of this centralized mode of operation, the
controller maintains an up-to-date view of the SDN topology,
as well as all ancillary switch data (such as flows, port statuses

2The authors are not affliated with Dell, the Linux Foundation, or any
organization for whose products are mentioned or featured in this paper.
The views expressed herein are subjective and not indicative of any product
endorsement or criticism.

and traffic counts). The web interface offered by the controller
allows convenient administration of the network through an
intuitive webpage accessed from the control network.

We first encountered trouble on the SDN when we grew
our network to approximately 200 hosts. At that scale, we
started to experience intermittent performance issues caused by
discontinuous hardware flow rules on some source-destination
paths. These problems would manifest as high-latency (ap-
proximately 500-1000ms), lossy flows alongside other flows
that perform well. We determined that packets transiting these
discontinuities caused flow-missed events to be raised in
OpenFlow, which caused these packets to be encapsulated
and forwarded to the controller for processing. To ensure
delivery, the controller used software forwarding to copy the
packets to their destinations. Our investigations also revealed
no capacity problems with the switch hardware table, and we
concluded that the rules were simply not being installed by the
controller despite continuous flow-miss events resulting from
the flow discontinuities. We were able to rectify the problem by
manually installing the missing rules on the affected switches.

To find out if the missing flow problem was correlated,
we restarted the controller multiple times. We found that
controller restarts frequently rectify the problem of missing
flows in some source-destination paths, but it did not prevent
the same problem from recurring on other paths. Furthermore,
the controller removes all hardware flows during a software
restart, causing a long period of degraded network operation
as the controller repopulates its view of the SDN and falls
back on software forwarding in the interim. On our 15 switch
network, it takes about 10-15 minutes for this controller to
recover after a restart.

B. Controller B

Controller B is a commercially available, proprietary 1U
integrated server/OpenFlow controller. It is marketed as a
turnkey solution that is simple to use and fast, and the system
has received many accolades over the years since it was first
available several years ago. The controller is also centralized
and provides multiple ways for an administrator to view and
manage the network, such as through the command line and
over the web. The system is robust and is able to maintain a
running view of the operational data and SDN topology.

This controller also experienced scaling issues on our SDN
at approximately 200 hosts. Although the controller did not
create discontinuous paths, it would sometimes refuse to setup
flows for a newly-introduced system. Consequently, the system
does not appear on the topological view and does not receive
network access. We have also encountered connectivity issues
following rapid cycling of a network device’s link state: the
controller enforces a lockdown period of about 15 minutes
before returning the device to active use.

C. IronStack

Length limitations prevent a detailed discussion of our
IronStack controller. In brief summary, IronStack is an open
source SDN controller intended to offer a turn-key operator
experience while imposing a flexible set of security and
reliability guarantees at the fabric level, for example by mul-
tiplexing traffic across redundant SDN links and encrypted



for protection against intrusion. For our purposes here, the
details are not important, because as it turned out, the operator
experiences of the ITSG and CIT teams had a far greater role
in shaping technology deployment choices than the special
features IronStack was actually created to showcase.

Because ITSG and CIT were unable to successfully deploy
controllers A and B in stable configurations, for a period of
time ITSG actually only used IronStack in the full SDN sys-
tem. Eventually, as campus network security policies evolved,
a decision was made to run IronStack only within our research
slices. Thus we have a total of 24 months of experience with
IronStack, of which 10 months included our full production
network. When IronStack was cut back to research-only use,
the entire production workload was shifted to the standard
(switched Ethernet) CIT network and off of SDN, highlighting
the continuing concerns about SDN stability and manageability
in production networking environments.

VI. LESSONS LEARNT

A. The switch-to-controller pipe is thin

One of the first lessons we verified is that the OpenFlow
control connection between the switch and the controller is a
serious bottleneck. This corroborates with findings from other
prior work [22] [9]. On our Dell S4810/20 hardware with TLS
turned off, the control connection rarely exceeded a throughput
of 2.54Mbps on a dedicated 1Gbps out-of-band network port.
This is a few orders of magnitude lower than the maximum
speed of the network port, and could not be explained by
slow link activity. We found that the bottleneck was due to
an overloaded switch processor. The embedded processor runs
the Force10 Operating System, a variant of Linux that provides
OpenFlow agent support through an application layer.

Because the switch processor is heavily taxed by other
scheduling demands, OpenFlow functionality is prone to slow-
downs at high loads. This effect is especially pronounced
during times of high PACKET_IN throughput. PACKET_IN
events are most commonly generated in response to flow-
misses, where a switch forwards a packet to the controller
following a failure to find a matching OpenFlow rule. Even
on switches with light network traffic, consecutive flow-miss
events can quickly overwhelm the CPU, leading to dropped
PACKET_IN messages, slow OpenFlow throughput and high
latencies processing OpenFlow commands on the switch.

PACKET_IN events may also be generated in response to
an explicit request for flow traffic to be forwarded or copied
to the controller. This is helpful in certain circumstances when
a controller wishes to discover network state (for example, by
snooping on all ARP and DHCP packets). However, flow-miss
events will experience contention and be negatively impacted
by PACKET_INs received through this method. To minimize
flow-miss packet losses, we advise against explicit copying of
flow packets to the controller where possible.

B. Consider not flushing rules on restart

Many OpenFlow switches today have a fail-secure mode
that allows installed flows to remain on a switch and pro-
vide limited operational continuity should the controller be
disconnected. Our experience with controllers A and B shows

that a complete rule removal on controller restarts is often
unnecessary, and can be counterproductive in some situations.
Apart from occasional flow discontinuities, the controllers
typically regenerate the same rules across restarts. However,
manually-inserted rules (such as those used to circumvent flow
discontinuities) are lost when all flow rules are cleared.

Because complete rule regeneration from a scratch is a
time-consuming operation and SDN controllers are unlikely to
be adversarial (by installing bogus, broken, or harmful flow
rules for its successor), we recommend against the practice of
flushing all flow rules during a controller restart unless there
is reason to suspect that correctness may be compromised on
a large scale. Rules installed by a predecessor represent the
product of some computation or planning and should not be
wasted. Instead, we suggest that rules be inherited and verified
for preservation on controller startup, and an alternate strategy
be used for clearing the flows on the switch if needed.

Clearing the flow table instantly and in its entirety is
rarely needed as an emergency procedure. If a genuine need
to remove flows arises, we suggest that they be removed
one at a time or in small quantities batchwise. On Open-
Flow 1.0, the controller can do this by first initiating an
OFPT_STATS_REQUEST with a request of OFPST_FLOW to
retrieve a list of all flows on the switch, and then issuing
staggered OFPT_FLOW_MOD requests to remove flows one
at a time. The overall effect is to spread out flow deletes
that would immediately cause flow-miss events: should the
controller remove a flow that was actually active at the time,
the resulting flow-miss packets would be less numerous than
if multiple flows were generating flow-miss events in response
to a bulk removal request. In turn, the switch is less likely
to drop flow-miss events, and the controller can establish new
flows more expediently.

On the other hand, if the intention of the controller is to
prune unneeded rules without disrupting any flow, it could
do so in an unintrusive manner. The controller could identify
passive flows by sampling the list of all individual flow statis-
tics retrieved from the switch via the OFPT_FLOW_STATS
request. Flows that have not seen new packets in a certain
amount of time can be deemed to be inactive and individually
removed to free up entries in the flow table.

C. Be cognizant of hardware limitations

Although the OpenFlow specification provides a compre-
hensive array of matching criteria and actions that can be com-
bined in many useful ways, the reality is that these OpenFlow
capabilities are limited to what the hardware vendor chooses to
support. The OpenFlow switch specification describes the full
set of actions that a switch may implement, however switch
vendors are only obligated to support actions that are marked
as ‘required’. In the 1.0 version of the specification, mandatory
action support only extends to dropping packets or forwarding
to certain ports; useful actions such as packet header field
modification and port flooding are optional and may not be
available.

Furthermore, even similar actions across different hardware
could have various performance characteristics [21] [11]. This
non-uniformity of OpenFlow action support and performance
can be a source of surprise and frustration to the OpenFlow



developer, who may build generic software controllers and
support equipment that become functionally degraded or even
completely incompatible with real-world hardware. On the
other hand, a developer that targets specific hardware may
be exposed to vendor lock-in as it is unlikely that all other
OpenFlow hardware will provide a similar level of support,
let alone behave identically. This point was an especially acute
lesson for us because we had been developing early versions
of our OpenFlow controller using Open vSwitch [6] as a
reference switch. As a result, we committed substantial time to
implementing features that worked well under Open vSwitch
but were not well-supported in hardware. For example, at the
time of our early prototype, our Dell S4810/20 switch did not
support the OpenFlow action to strip VLAN tags and we had
to emulate this functionality in software, severely degrading
the performance of our system.

D. Equipment-specific features can make a big difference

We attempted to understand the reasons for the scale
limits experienced by the controllers we used. The Dell
S4810/20 hardware feature multiple forwarding tables. On
these switches, flows can be differentiated by types to fall
into one of the ACL, L2 or L3 flow classifications. Ordinarily,
the multiple forwarding table functionality is disabled and all
flows are stored in the ACL (general-purpose) OpenFlow table,
which has capacity for only 500 flows. When enabled through
an out-of-band command line configuration utility, the switch
transparently stores flows matching L2 or L3 classifications
into dedicated separate tables. The L2 and L3 flows are
particularly compelling because they feature deep tables well-
suited for common switching and routing tasks, freeing up
valuable ACL table space for more unusual flow rules. Table
1 shows the respective flow table capacities on the S4810/20
switches, while Tables 2 and 3 show the respective syntaxes
of the L2 and L3 flows [2].

Table name Flow capacity
ACL 500
L2 48000
L3 6000

TABLE I. FLOW TABLE CAPACITIES ON DELL S4810/20 SWITCHES.

Parameter type Parameters
Match criteria • dl_vlan (input VLAN ID).

• dl_dst (destination Ethernet address).
• all other fields must be wildcarded.

Actions • OFPAT_OUTPUT output to a single physical
switch port.

TABLE II. L2 FLOW CLASSIFICATION.

Parameter type Parameters
Match criteria • dl_dst must be set to the switch port’s Ethernet

address.
• dl_type must be set to 0x0800.
• nw_dst can be optionally set.
• all other fields must be wildcarded.

Actions • set_dl_src must be set to switch port’s Eth-
ernet address.
• set_dl_dst (destination Ethernet address).
• OFPAT_OUTPUT output to a single physical
switch port.

TABLE III. L3 FLOW CLASSIFICATION.

Our investigation showed that both Controller A and Con-
troller B installed rules that did not fit into either of the
L2 or L3 flow classifications. Instead, those flow rules were
placed into the ACL table, which prevented the network from
scaling once the table was full and no new flows could be
created. We discovered that the reason for using ACL entries
was because the controllers were unaware of the syntax or
availability of the L2 and L3 tables, which prevented them
from taking advantage of the deep tables. In contrast, IronStack
did not make substantial use of ACL entries at all because the
policies ITSG sought to support were mostly simple enough
to be expressed in L2 flows.

E. Non-standard behavior is standard

Specification-deviating behavior may come as a surprise for
developers who assume that hardware marketed as OpenFlow-
compliant will exhibit features and functionality exactly as
written in the OpenFlow standard. This can be an issue for
developers who build their controllers on reference switch
implementations (eg. Open vSwitch) and later deploy them
on actual OpenFlow hardware.

Non-standard hardware behavior has caught us by surprise
on a number of occasions. On our Dell S4810/20 switches,
flow priority is only honored within entries in the ACL table;
the priority field is completely ignored for flows that fit in the
L2 or L3 tables. This posed a problem for our controller, as it
had to be aware of these equipment subtleties and install flows
into the ACL table if it wished to override specified flows in
the L2 or L3 tables.

As another example on our hardware, L2 flows are not
instrumented with packet or traffic counters, which limits their
utility in network analysis. This forces the developer into a
dilemma between the creation of an instrumented ACL flow
on a capacity-limited table, or an uninstrumented L2 flow on
a large table. To complicate the situation, L2 flows cannot
be configured with arbitrary idle timeouts; these flows are
either permanent (if the idle timeout value is specified as 0
in the flow rule), or set to some switch preset value (if the
specified dle timeout value was non-zero). Since there are no
indications of warnings or errors when L2 flows are installed
with arbitrary timeouts, an equipment-agnostic controller may
mistakenly assume the flow to time itself out accordingly.

On the L3 table, flows are permanent and do not honor any
specified idle timeouts. Similar to L2 flows, no information
is given by the hardware to indicate that the idle timeout is
ignored on an L3 flow.

While these non-standard behavior are generally innocuous
quirks, they make it difficult for a developer to write a general-
purpose OpenFlow controller that exhibits predictable behavior
across different hardware. For example, an OpenFlow con-
troller used to drive a commercial pay-per-use network might
rely on L3 flow timeouts to redirect a customer to a captive
portal when a lease time expires. Without equipment-specific
knowledge of non-standard flow timeout behavior, general-
purpose controllers may not correctly enforce customer access
policies. In the case of an L2 flow, a software workaround for
the idle timeout may not even be possible since it offers no
packet counters that can be used to track flow activity.



F. Configuration tools are just as important as OpenFlow

Although OpenFlow presents a useful interface through
which a switch may be controlled, the specifications omit a
discussion of equipment configuration tools or utilities because
they are often vendor and equipment-specific. Equipment
configuration tools provide the means to set up operating
parameters that are not necessarily controllable from or related
to OpenFlow. For example, the IP address and port num-
ber of a controller must be specified to the switch before
it can establish an OpenFlow connection to the controller.
Other important functionality that are only accessible through
equipment configuration tools may include means to power
cycle the device, set up VLANs and port tags, as well as
enable specific OpenFlow tables or slicing features. On most
OpenFlow switches that we are aware of, the configuration tool
presents itself as a command line interface physically accessed
through the switch’s serial (RS232) port. Because OpenFlow
switches have their own IP addresses on the control network,
they often also support access to the same configuration tool
over telnet or SSH.

We take the view that control over these functionalities
is just as important as OpenFlow itself in a comprehensive
network controller, particularly if the configuration utilities
also provide information or indirect control over OpenFlow
capability on a switch. As an example relevant to our SDN
setup, a network controller should be able to inspect the switch
configuration for VLAN or port information pertaining to its
slice. It should also be able to control deep table options or
reconfigure the IP address and port that the switch seeks a
controller at. We are presently unaware of controllers that can
perform equipment configuration along with OpenFlow.

G. Switch misconfiguration can cause confusion

Even with compatible controllers designed to correctly take
advantage of the various hardware tables available, it may
still not be apparent to the controller that the hardware tables
are indeed being used. On the Dell OpenFlow switches, an
external configuration utility must be used to manually enable
the switch to operate in ’multiple-flow’ table mode, and then
the individual L2 and L3 flow maps have to be enabled in
order for flows specified in the L2/L3 formats to be stored
into their high capacity hardware tables. Without the features
enabled (which is the default), these flows would be stored in
the ACL table.

On our SDN setup, there is no way for a controller to verify
that the flows have been stored into the right hardware table,
since OpenFlow flow statistics from our Dell hardware do
not annotate flows with their flow table IDs. Furthermore, the
OpenFlow specification does not provide a way to obtain table
capacities, which precludes the ability for a controller to make
an informed decision with respect to flow installation. The
only way that a controller can tell if a table is full is when the
error OFPMFCTABLEFULL is generated in response to a flow
installation command. By this time, it may be too late for the
controller to take remedial action. On the other hand, such table
capacities are usually advertised by the vendor or otherwise
accessible from the switch configuration utility. We believe
that knowledge of table capacities should be propagated to the
controller to aid planning purposes.

H. Isolation is not perfect

Virtualization on an OpenFlow switch provides logical
isolation between one controller’s traffic from another. Vir-
tualization techniques can be software-based, as in FlowVisor
[22], or hardware-based, as is provided directly on the Dell
S4810/20 switches. In either case, it is important to note
that virtualization does not provide perfect resource isolation
between controllers. Resources such as the embedded CPU,
forwarding table capacity and bandwidth are shared across all
controllers working on the switch.

This is a well-known phenomenon with all virtualization
techniques, and is neither a flaw nor bug in the virtualization
mechanism. However, controllers should be designed with the
assumption that they could be run on virtualized hardware, and
thus engage in better cooperative sharing tactics. For example,
controllers could minimize flow table wastage by setting an
idle timeout on their flows, while also not consuming excessive
switch computational power by indiscriminately copying data
plane packets to the controller.

I. No controller-to-data plane communications

One feature that we would have liked to see in a SDN con-
troller is the ability to communicate directly with networking
applications that run on the data plane. At present, we are not
aware of any controllers that have such a capability, except for
Google’s B4 [12] Routing Application Proxy, which bridges
packets from the Quagga control plane and the switch’s data
plane. The ability for a network application to communicate
directly with the controller opens up substantial development
opportunities. For example, the controller can host a HTTP
subsystem that serves users statistics about their network
usage, or provide a webpage through which network QoS
could be requested. A data plane presence on the network
also allows the controller to easily implement features such
as captive portals.

VII. PERFORMANCE

SDN performance should be understood as having two
complementary aspects. We tend to think about SDN switches
and routers in terms of end-to-end flow performance, and in
our experience, this aspect of performance was completely
satisfactory: Controller A and Controller B both achieved
their rated speed and successfully support the Gates Hall use
patterns. Less well appreciated is the degree to which controller
performance turns out to shape operational experience. Here,
our experience has been more complicated.

When working with the vendor-supplied controller soft-
ware, the many limitations and issues cited earlier combined
to make it impractical to actually use them operationally for
our scale of use cases. In contrast, we have been successful
in operating the Gates Hall SDN configuration using our
IronStack controller. Table 4 summarizes the numbers of active
rules and includes some basic performance metrics gleaned
from this effort.

The Gates SDN is an operational network used for Cornells
research and teaching, we were not able to isolate the system
and conduct stress tests on our controller or the network.
However, we do hope to create an isolated research subnetwork



Metric Value
Total rules 280 L2 rules, 4 ACL rules
Peak CPU usage 15.7%
Average CPU usage 1.3%
Reactive rules created/sec (peak) 25
Average switch echo response time
(sec)

22ms

Maximum PACKET_IN through-
put

2.54Mbps

TABLE IV. MICROMEASUREMENTS OF OUR OWN CONTROLLER ON A
8-CORE INTEL XEON E5405 CLOCKED AT 2GHZ.

in the coming months, which would then permit us to engage
in the form of more microbenchmarks that might shed deep
light on the scalability of our solution and the potential for
deployment of SDN in networking in larger campus configu-
rations. The Gates Hall experience, modulo the difficulties we
had with off the shelf controller software, actually encourages
us to believe that larger SDN configurations should certainly
be feasible, and our hope is to explore that option in future
work.

VIII. CHALLENGES AHEAD FOR SDN

Going forward with SDN, several important challenges
remain to be addressed:

A. Switch CPU performance

The most immediate concern facing SDN technology is the
disparity in computing power between the switch processor
and a controller. As our experience shows, the embedded
switch processor is typically undersized and is often responsi-
ble for the bottleneck between the controller and the switching
fabric. This bottleneck becomes more pronounced as succes-
sive versions of the OpenFlow standard impose additional
complexity upon the embedded processor.

B. Capacity of rule tables

Another issue facing SDN hardware is its relative scarcity
of general-purpose flow entries. Compared to traditional
switches, general-purpose 12-tuple OpenFlow rule matching
consumes more expensive ternary content address memory
(TCAM) and therefore offers less entries for the same amount
of TCAM space. Even with recent advances in OpenFlow
TCAM storage efficiencies, the number of available general-
purpose entries on most switches today is generally no more
than 2000, with many switches offering less than 1000 (see
Table 5). This is an order of magnitude lesser than consumers
are used to with traditional hardware, and is often perceived
to be a limiting factor in scaling a network. The problem is
somewhat alleviated by dedicated tables that can be used to
soak up commonly-installed flow types, however the shortage
of cheap TCAM for general-purpose OpenFlow rules will
continue to be an impediment for some time.

C. Non-standard behavior

While non-standard behavior is generally tolerated as
vendor differences between hardware companies, the reality
is that non-conformance to standards makes it difficult for
generic OpenFlow controllers to be written without introducing

OpenFlow switch
model

Generic flow capacity Other tables avail-
able

Dell S4810/20 500 L2, L3
Dell N2048 896 L2, VLAN
NEC PF5820 750 L2
Pica8 P3297 8000 L2, L3
Brocade MLX 4000 L2, L3, L23

TABLE V. OPENFLOW TABLE CAPACITIES OF SOME EQUIPMENT.

substantial conditional code or a complete driver layer. The in-
creasing number of OpenFlow hardware vendors, coupled with
the growing complexity of OpenFlow standards, increases the
risk of emergent vendor-specific behavior that can negatively
impact controller development.

IX. RELATED WORK

Most of our unusual findings about non-standard OpenFlow
switch behavior were serendipitous discoveries in the course
of trying to build an operational SDN controller. Kuzniar et
al [13] performed investigations on a number of OpenFlow
switches to characterize the interaction between the control
plane and the data plane. The authors uncovered a substantial
amount of surprising behavior, including temporal locality
behavior in switch updates, performance degradation caused
by priority fields, non-atomic rule modifications on a switch
and even incorrect OpenFlow barrier behavior. Although their
discoveries were made on different switches, it supports our
hypothesis that unexpected, standard-deviating behavior is a
phenomenon that should be taken seriously by developers.

DevoFlow [9] examines the various causes of latency in-
herent to OpenFlow and describes the negative impact of flow
table size and statistics collection on OpenFlow performance.
They then prescribe and verify more efficient methods to install
flows and gather statistics by minimizing interactions with the
SDN control plane. While their choice of OpenFlow hardware
was different, our experiences were largely similar.

The OFLOPS [21] framework recognizes diversity in
the performance and implementation of OpenFlow switch
firmware, and characterizes their behavior and performance
under a variety of test cases. These characteristics can be
used to model switch behavior more accurately than testing
on reference implementations of OpenFlow, such as Open
vSwitch [6]. Interestingly, their work also uncovered bugs in
the implementation of barriers on switches.

Danny et al [11] studied the similar problem of trying
to emulate specific vendor performance characteristics with
respect to control path delays and flow table usage. They
were able to improve the accuracy of switch emulation to a
high degree of accuracy across multiple vendors, which can
potentially aid developers trying to test their controllers on a
variety of hardware without access to the hardware themselves.

NOSIX [25], is a proposed solution to provide better
standardization across diverse OpenFlow switch hardware.
The authors describe a uniform, portable abstraction layer
for SDN controller development through the use of virtual
flow tables and vendor-provided switch drivers. Controller
developers then specify their requirements for rule processing
and make promises about their usage of the virtual flow tables.



Unfortunately, NOSIX is not currently in widespread use and
few switch vendors have supplied their switch drivers.

X. CONCLUSION

In this paper, we presented our observations and findings
from deploying readily-available OpenFlow controllers on our
SDN. Through operation of these controllers, we identified
a number of important issues with SDN deployment and
OpenFlow controller design. The paper concluded with some
of the challenges that continue to hinder SDN adoption at a
larger scale.
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